Lipschitz graphs and currents in Heisenberg groups
نویسندگان
چکیده
Abstract The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs codimension $k\leq n$ in sub-Riemannian Heisenberg groups ${\mathbb H}^{n}$ . For purpose proving such result, we settle several related questions pertaining both to theory and one currents. First, prove an extension as well uniform approximation by means smooth graphs: these results stem from new definition (equivalent introduced B. Franchi, R. Serapioni F. Serra Cassano) are valid more general class Carnot groups. Second, our proof Rademacher’s heavily uses language currents groups: key is, us, version celebrated constancy theorem. Inasmuch defined terms Rumin’s complex differential forms, also provide convenient basis spaces. Eventually, some applications including Lusin-type graphs, equivalence between H}$ -rectifiability ‘Lipschitz’ area formula
منابع مشابه
Intrinsic Lipschitz Graphs in Heisenberg Groups
In the last few years there have been a fairly large amount of work dedicated to the study of intrinsic submanifolds of various dimension and codimension inside the Heisenberg groups H or more general Carnot groups. For example intrinsically C surfaces, rectifiable sets, finite perimeter sets, various notions of convex surfaces have been studied. Here and in what follows, intrinsic will denote ...
متن کاملSmoothness of Lipschitz Minimal Intrinsic Graphs in Heisenberg Groups
We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.
متن کاملIntrinsic Lipschitz Graphs in Heisenberg Groups and Continuous Solutions of a Balance Equation
In this paper we provide a characterization of intrinsic Lipschitz graphs in the subRiemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation φy + [φ/2]t = w, where w is a bounded function.
متن کاملSmoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1
We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum of Mathematics, Sigma
سال: 2022
ISSN: ['2050-5094']
DOI: https://doi.org/10.1017/fms.2021.84